Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Humanos , Adulto , Ratos , Animais , Idoso , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Oxirredução , Hipertrofia/metabolismo , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia
2.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456539

RESUMO

Cardiac hypertrophy is one of the key processes in the development of heart failure. Notably, small GTPases and GTPase­activating proteins (GAPs) serve essential roles in cardiac hypertrophy. RhoGAP interacting with CIP4 homologs protein 1 (RICH1) is a RhoGAP that can regulate Cdc42/Rac1 and F­actin dynamics. RICH1 is involved in cell proliferation and adhesion; however, to the best of our knowledge, its role in cardiac hypertrophy remains unknown. In the present study, the role of RICH1 in cardiomyocyte hypertrophy was assessed. Cell viability was analyzed using the Cell Counting Kit­8 assay and cells surface area (CSA) was determined by cell fluorescence staining. Reverse transcription­quantitative PCR and western blotting were used to assess the mRNA expression levels of hypertrophic marker genes, such as Nppa, Nppb and Myh7, and the protein expression levels of RICH1, respectively. RICH1 was shown to be downregulated in isoproterenol (ISO)­ or angiotensin II (Ang II)­treated H9c2 cells. Notably, overexpression of RICH1 attenuated the upregulation of hypertrophy­related markers, such as Nppa, Nppb and Myh7, and the enlargement of CSA induced by ISO and Ang II. By contrast, the knockdown of RICH1 exacerbated these effects. These findings suggested that RICH1 may be a novel suppressor of ISO­ or Ang II­induced cardiomyocyte hypertrophy. The results of the present study will be beneficial to further studies assessing the role of RICH1 and its downstream molecules in inhibiting cardiac hypertrophy.


Assuntos
Cardiopatias Congênitas , Miócitos Cardíacos , Nitrobenzoatos , Procainamida/análogos & derivados , Humanos , Miócitos Cardíacos/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiopatias Congênitas/metabolismo
3.
BMC Endocr Disord ; 24(1): 39, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481206

RESUMO

BACKGROUND: A better understanding of adipose tissue (AT) dysfunction, which includes morphological and functional changes such as adipocyte hypertrophy as well as impaired adipogenesis, lipid storage/mobilization, endocrine and inflammatory responses, is needed in the context of obesity. One dimension of AT dysfunction, secretory adiposopathy, often assessed as a low plasma adiponectin (A)/leptin (L) ratio, is commonly observed in obesity. The aim of this study was to examine markers of AT development and metabolism in 67 women of varying age and adiposity (age: 40-62 years; body mass index, BMI: 17-41 kg/m2) according to levels of adiponectinemia, leptinemia or the plasma A/L ratio. METHODS: Body composition, regional AT distribution and circulating adipokines were determined. Lipolysis was measured from glycerol release in subcutaneous abdominal (SCABD) and omental (OME) adipocytes under basal, isoproterenol-, forskolin (FSK)- and dibutyryl-cyclic AMP (DcAMP)-stimulated conditions. Adipogenesis (C/EBP-α/ß/δ, PPAR-γ2 and SREBP-1c) and lipid metabolism (ß2-ARs, HSL, FABP4, LPL and GLUT4) gene expression (RT-qPCR) was assessed in both fat depots. Participants in the upper versus lower tertile of adiponectin, leptin or the A/L ratio were compared. RESULTS: Basal lipolysis was similar between groups. Women with a low plasma A/L ratio were characterized by higher adiposity and larger SCABD and OME adipocytes (p<0.01) compared to those with a high ratio. In OME adipocytes, women in the low adiponectinemia tertile showed higher isoproterenol-stimulated lipolysis (0.01

Assuntos
Adiponectina , Leptina , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Adiponectina/metabolismo , Leptina/metabolismo , Isoproterenol/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo
4.
Toxicology ; 503: 153752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369011

RESUMO

The study sought to assess the detrimental effects of isoproterenol (ISO) on major organs and investigate the potential reversibility of these adverse reactions in mice. Male mice were divided into normal control, 0.2 mg/kg.d and 3.0 mg/kg.d ISO groups, and were subcutaneously administered of the respective doses for 14 consecutive days. Subsequently, a recovery period experiment was conducted, replicating the aforementioned procedure, followed by an additional 2-week recovery period for the mice. Following 14 consecutive days of administration, mice treated with ISO exhibited notable cardiac damage manifested by abnormal ECG patterns, dysregulated energy metabolism, elevated cardiac hypertrophy, and increased heart pathological score. Additionally, the administration of ISO resulted in liver and kidney damage, as evidenced by increased pathological score, serum albumin level, and urea level. Lung damage was also observed, indicated by an increase in lung pathological score. Furthermore, the administration of ISO at a dosage of 3.0 mg/kg.d resulted in a decrease in liver mass index, serum iron content, and an increase in lung mass index. After a 2-week recovery period, mice treated with ISO showed abnormalities in ECG patterns and dysregulated myocardial energy metabolism, accompanied by a decrease in serum iron content. Histopathological examinations revealed continued pathological changes in the heart and lung, as well as significant hemosiderin deposition in the spleen. Furthermore, the group treated with ISO at a dosage of 3.0 mg/kg.d showed an increase in serum AST and TP levels. In summary, the study demonstrates that both 0.2 mg/kg.d and 3.0 mg/kg.d doses of ISO can induce damage to the heart, liver, lung, kidney, and spleen, with the higher dose causing more severe injuries. After a 2-week withdrawal period, the liver, kidney, and thymus injuries caused by 0.2 mg/kg ISO shows signs of recovery, while damage to the heart, lung, and spleen persists. The thymus injury mostly recovers, with minimal kidney pathology, but significant damage to the heart, liver, and lung remains even after the withdrawal period for the 3.0 mg/kg ISO dose.


Assuntos
Cardiomiopatias , Miocárdio , Ratos , Masculino , Camundongos , Animais , Isoproterenol/toxicidade , Isoproterenol/metabolismo , Ratos Wistar , Miocárdio/metabolismo , Cardiomiopatias/induzido quimicamente , Metabolismo Energético , Ferro/metabolismo
5.
Physiol Genomics ; 56(4): 360-366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314697

RESUMO

Adverse cardiac remodeling contributes to heart failure development and progression, partly due to inappropriate sympathetic nervous system activation. Although ß-adrenergic receptor (ß-AR) blockade is a common heart failure therapy, not all patients respond, prompting exploration of alternative treatments. Minocycline, an FDA-approved antibiotic, has pleiotropic properties beyond antimicrobial action. Recent evidence suggests it may alter gene expression via changes in miRNA expression. Thus, we hypothesized that minocycline could prevent adverse cardiac remodeling induced by the ß-AR agonist isoproterenol, involving miRNA-mRNA transcriptome alterations. Male C57BL/6J mice received isoproterenol (30 mg/kg/day sc) or vehicle via osmotic minipump for 21 days, along with daily minocycline (50 mg/kg ip) or sterile saline. Isoproterenol induced cardiac hypertrophy without altering cardiac function, which minocycline prevented. Total mRNA sequencing revealed isoproterenol altering gene networks associated with inflammation and metabolism, with fibrosis activation predicted by integrated miRNA-mRNA sequencing, involving miR-21, miR-30a, miR-34a, miR-92a, and miR-150, among others. Conversely, the cardiac miRNA-mRNA transcriptome predicted fibrosis inhibition in minocycline-treated mice, involving antifibrotic shifts in Atf3 and Itgb6 gene expression associated with miR-194 upregulation. Picrosirius red staining confirmed isoproterenol-induced cardiac fibrosis, prevented by minocycline. These results demonstrate minocycline's therapeutic potential in attenuating adverse cardiac remodeling through miRNA-mRNA-dependent mechanisms, especially in reducing cardiac fibrosis. NEW & NOTEWORTHY We demonstrate that minocycline treatment prevents cardiac hypertrophy and fibrotic remodeling induced by chronic ß-adrenergic stimulation by inducing antifibrotic shifts in the cardiac miRNA-mRNA transcriptome.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , MicroRNAs , Humanos , Masculino , Camundongos , Animais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Minociclina/farmacologia , Miócitos Cardíacos/metabolismo , Adrenérgicos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Remodelação Ventricular/genética , Camundongos Endogâmicos C57BL , Cardiomegalia/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Fibrose
6.
Int J Pharm ; 653: 123872, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336178

RESUMO

Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. ß-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer. The research focuses on designing and evaluating both conventional BS-NS and hyaluronic acid (HA) modified NS (BS-HA-NS) to enhance the specificity and efficacy of BS within cardiac tissue. The resulting niosomal formulation was spherical, with a size of about 158.51 ± 0.57 nm, an entrapment efficiency of 93.56 ± 1.48 %, and a drug loading of 8.07 ± 1.62 %. To evaluate cytotoxicity on H9c2 heart cells, the MTT assay was used. The cellular uptake of BS-NS and BS-HA-NS was confirmed by confocal microscopy on H9c2 cardiac cells. Administering BS-NS and BS-HA-NS intravenously at a dose of 10 mg/kg showed the ability to significantly decrease the levels of cardiac troponin-I (cTn-I), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and lipid peroxidation (MDA). Tissue histopathology indicated a substantial potential for repairing cardiac tissue after treatment with BS-NS and BS-HA-NS and strong cardioprotection against ISO induced myocardial tissue damages. Thus, enhancing BS's therapeutic effectiveness through niosome surface modification holds promise for mitigating cardiac damage resulting from CT.


Assuntos
Cardiotoxicidade , Infarto do Miocárdio , Sitosteroides , Ratos , Animais , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Lipossomos/farmacologia , Cardiotônicos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Antioxidantes/farmacologia , Estresse Oxidativo
7.
Clin Sci (Lond) ; 138(1): 23-42, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38060817

RESUMO

Reductions in Na+-K+-ATPase (NKA) activity and expression are often observed in the progress of various reason-induced heart failure (HF). However, NKA α1 mutation or knockdown cannot cause spontaneous heart disease. Whether the abnormal NKA α1 directly contributes to HF pathogenesis remains unknown. Here, we challenge NKA α1+/- mice with isoproterenol to evaluate the role of NKA α1 haploinsufficiency in isoproterenol (ISO)-induced cardiac dysfunction. Genetic knockdown of NKA α1 accelerated ISO-induced cardiac cell hypertrophy, heart fibrosis, and dysfunction. Further studies revealed decreased Krebs cycle, fatty acid oxidation, and mitochondrial OXPHOS in the hearts of NKA α1+/- mice challenged with ISO. In ISO-treated conditions, inhibition of NKA elevated cytosolic Na+, further reduced mitochondrial Ca2+ via mNCE, and then finally down-regulated cardiac cell energy metabolism. In addition, a supplement of DRm217 alleviated ISO-induced heart dysfunction, mitigated cardiac remodeling, and improved cytosolic Na+ and Ca2+ elevation and mitochondrial Ca2+ depression in the NKA α1+/- mouse model. The findings suggest that targeting NKA and mitochondria Ca2+ could be a promising strategy in the treatment of heart disease.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Adenosina Trifosfatases/metabolismo
8.
Cell Commun Signal ; 21(1): 346, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037039

RESUMO

In essence, the ß2 adrenergic receptor (ß2AR) plays an antiproliferative role by increasing the intracellular cyclic 3',5'-adenosine monophosphate (cAMP) concentration through Gαs coupling, but interestingly, ß2AR antagonists are able to effectively inhibit fibroblast-like synoviocytes (FLSs) proliferation, thus ameliorating experimental RA, indicating that the ß2AR signalling pathway is impaired in RA FLSs via unknown mechanisms. The local epinephrine (Epi) level was found to be much higher in inflammatory joints than in normal joints, and high-level stimulation with Epi or isoproterenol (ISO) directly promoted FLSs proliferation and migration due to impaired ß2AR signalling and cAMP production. By applying inhibitor of receptor internalization, and small interfering RNA (siRNA) of Gαs and Gαi, and by using fluorescence resonance energy transfer and coimmunoprecipitation assays, a switch in Gαs-Gαi coupling to ß2AR was observed in inflammatory FLSs as well as in FLSs with chronic ISO stimulation. This Gαi coupling was then revealed to be initiated by G protein coupled receptor kinase 2 (GRK2) but not ß-arrestin2 or protein kinase A-mediated phosphorylation of ß2AR. Inhibiting the activity of GRK2 with the novel GRK2 inhibitor paeoniflorin-6'-O-benzene sulfonate (CP-25), a derivative of paeoniflorin, or the accepted GRK2 inhibitor paroxetine effectively reversed the switch in Gαs-Gαi coupling to ß2AR during inflammation and restored the intracellular cAMP level in ISO-stimulated FLSs. As expected, CP-25 significantly inhibited the hyperplasia of FLSs in a collagen-induced arthritis (CIA) model (CIA FLSs) and normal FLSs stimulated with ISO and finally ameliorated CIA in rats. Together, our findings revealed the pathological changes in ß2AR signalling in CIA FLSs, determined the underlying mechanisms and identified the pharmacological target of the GRK2 inhibitor CP-25 in treating CIA. Video Abstract.


Assuntos
Artrite Experimental , Sinoviócitos , Animais , Ratos , Artrite Experimental/patologia , Proliferação de Células , Células Cultivadas , Epinefrina/metabolismo , Epinefrina/farmacologia , Epinefrina/uso terapêutico , Fibroblastos/metabolismo , Inflamação/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Isoproterenol/uso terapêutico , Transdução de Sinais , Sinoviócitos/metabolismo , Sinoviócitos/patologia
9.
Biotech Histochem ; 98(8): 593-605, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37779487

RESUMO

Canagliflozin (CZ) is commonly prescribed for management of type-2 diabetes mellitus (T2DM); it also can reduce the risk of myocardial infarction. We used 80 albino Wistar rats to investigate the cardioprotective potential of CZ against oxidative stress caused by administration of isoprenaline (ISO). We found that ISO stimulates production of reactive oxygen species and that CZ administration caused up-regulation of antioxidants and down-regulation of oxidants due to nuclear factor erythroid-2 related factor-2, as well as by enhancement of the heme oxygenase-1 mediated cascade. CZ monotherapy may play a cardioprotective role in diabetic patients. CZ possesses strong antioxidant potential that ameliorates cardiac damage induced by ISO administration.


Assuntos
Heme Oxigenase-1 , Miócitos Cardíacos , Humanos , Ratos , Animais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Miócitos Cardíacos/metabolismo , Heme Oxigenase-1/metabolismo , Canagliflozina/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar
10.
Cell Stress Chaperones ; 28(6): 811-820, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37644219

RESUMO

The experimental myocardial infarction (MI) model originating from isoproterenol (ISO) is frequently preferred in research due to its similarity to MI-induced damage in humans. Beneficial effects of L-arginine (L-Arg), a semi-essential amino acid, in cardiovascular diseases have been shown in many studies. This study was carried out to determine whether L-Arg pre-intervention has protective effects on heart tissue in the experimental MI model. The 28 rats used in the study were randomly divided into 4 equal groups: control, L-Arg, ISO, and L-Arg+ISO. Upon completion of all applications, cardiac markers in serum and biochemical, histopathological, and immunohistochemical examinations in cardiac tissues were performed. Cardiac markers, histopathological changes, oxidative stress, inflammation, and apoptosis were increased in the experimental MI model. In addition, administration of ISO deregulated OTULIN levels and mitochondrial dynamics in heart tissue. However, L-Arg pre-intervention showed a significant protective effect against changes in ISO-induced MI. L-Arg supplementation with cardioprotective effect may reduce the risks of possible pathophysiological processes in MI.


Assuntos
Dinâmica Mitocondrial , Infarto do Miocárdio , Animais , Ratos , Arginina/farmacologia , Coração , Isoproterenol/efeitos adversos , Isoproterenol/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Miocárdio/metabolismo , Estresse Oxidativo
11.
J Biomed Sci ; 30(1): 55, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452346

RESUMO

BACKGROUND: Sustained, chronic activation of ß-adrenergic receptor (ß-AR) signaling leads to cardiac arrhythmias, with exchange proteins directly activated by cAMP (Epac1 and Epac2) as key mediators. This study aimed to evaluate whether CD44, a transmembrane receptor mediating various cellular responses, participates in Epac-dependent arrhythmias. METHODS: The heart tissue from CD44 knockout (CD44-/-) mice, cultured HL-1 myocytes and the tissue of human ventricle were used for western blot, co-immunoprecipitaiton and confocal studies. Line-scanning confocal imaging was used for the study of cellular Ca2+ sparks on myocytes. Optical mapping and intra-cardiac pacing were applied for arrhythmia studies on mice's hearts. RESULTS: In mice, isoproterenol, a ß-AR agonist, upregulated CD44 and Epac1 and increased the association between CD44 and Epac1. Isoproterenol upregulated the expression of phospho-CaMKII (p-CaMKII), phospho-ryanodine receptor (p-RyR), and phospho-phospholamban (p-PLN) in mice and cultured myocytes; these effects were attenuated in CD44-/- mice compared with wild-type controls. In vitro, isoproterenol, 8-CPT-cAMP (an Epac agonist), and osteopontin (a ligand of CD44) significantly upregulated the expression of p-CaMKII, p-RyR, and p-PLN; this effect was attenuated by CD44 small interfering RNA (siRNA). In myocytes, resting Ca2+ sparks were induced by isoproterenol and overexpressed CD44, which were prevented by inhibiting CD44. Ex vivo optical mapping and in vivo intra-cardiac pacing studies showed isoproterenol-induced triggered events and arrhythmias in ventricles were prevented in CD44-/- mice. The inducibility of ventricular arrhythmias (VAs) was attenuated in CD44-/- HF mice compared with wild-type HF controls. In patients, CD44 were upregulated, and the association between CD44 and Epac1 were increased in ventricles with reduced contractility. CONCLUSION: CD44 regulates ß-AR- and Epac1-mediated Ca2+-handling abnormalities and VAs. Inhibition of CD44 is effective in reducing VAs in HF, which is potentially a novel therapeutic target for preventing the arrhythmias and sudden cardiac death in patients with diseased hearts.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Receptores Adrenérgicos beta , Humanos , Camundongos , Animais , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo
12.
Immunopharmacol Immunotoxicol ; 45(6): 650-662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37335038

RESUMO

BACKGROUND: Myocardial necrosis is one of the most common cardiac and pathological diseases. Unfortunately, using the available medical treatment is not sufficient to rescue the myocardium. So that, we aimed in our model to study the possible cardioprotective effect of roflumilast (ROF) in an experimental model of induced myocardial injury using a toxic dose of isoprenaline (ISO) and detecting the role of vascular endothelial growth factor/endothelial nitric oxide synthase (VEGF/eNOS) and cyclic guanosine monophosphate/cyclic adenosine monophosphate/ sirtuin1 (cGMP/cAMP/SIRT1) signaling cascade. MATERIALS AND METHODS: Animals were divided into five groups; control, ISO given group (150 mg/kg) i.p. on the 4th and 5th day, 3 ROF co-administered groups in different doses (0.25, 0.5, 1 mg/kg/day) for 5 days. RESULTS: Our data revealed that ISO could induce cardiac toxicity as manifested by significant increases in troponin I, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and cleaved caspase-3 with toxic histopathological changes. Meanwhile, there were significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, eNOS, cGMP, cAMP and SIRT1. However, co-administration of ROF showed significant improvement and normalization of ISO induced cardiac damage. CONCLUSION: We concluded that ROF successfully reduced ISO induced myocardial injury and this could be attributed to modulation of PDE4, VEGF/eNOS and cGMP/cAMP/SIRT1 signaling pathways with antioxidant, anti-inflammatory, and anti-apoptotic properties.


Assuntos
Antioxidantes , Traumatismos Cardíacos , Ratos , Animais , Isoproterenol/toxicidade , Isoproterenol/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sirtuína 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Wistar , Miocárdio/metabolismo , Miocárdio/patologia , Traumatismos Cardíacos/patologia , Estresse Oxidativo
13.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241830

RESUMO

Myocardial infarction (MI) continues to be an important issue in healthcare systems worldwide, leading to high rates of morbidity and mortality. Despite ongoing efforts towards the development of preventive measures and treatments, addressing the challenges posed by MI remains difficult both in developed and developing countries. However, researchers recently investigated the potential cardioprotective effects of taraxerol utilizing an isoproterenol (ISO)-induced cardiotoxicity model among Sprague Dawley rats. Specifically, subcutaneous tissue injections consisting of 5.25 mg/kg or 8.5 mg/kg ISO were administered over two consecutive days as stimuli to induce cardiac injury. To investigate the possibility of preventing damage caused by ISO-induced cardiotoxicity by taraxerol treatment, five groups were formed: a normal control group (1% Tween 80), an ISO control group, an amlodipine group administered 5 mg/kg/day, and various doses of taraxerol. The study results showed that treatment significantly reduced cardiac marker enzymes. Additionally, pretreatment with taraxerol increased myocardial activity in SOD and GPx, leading to significant reductions in serum CK-MB levels along with MDA, TNF-α, and IL-6. Further histopathological analysis supported these observations, as treated animals had less cellular infiltration compared to untreated ones. These multifaceted findings suggest that oral administration of taraxerol could potentially protect hearts from ISO-caused damage by increasing endogenous antioxidant concentrations while decreasing pro-inflammatory cytokines.


Assuntos
Cardiotoxicidade , Infarto do Miocárdio , Ratos , Animais , Isoproterenol/toxicidade , Isoproterenol/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Mediadores da Inflamação/metabolismo , Ratos Sprague-Dawley , Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Antioxidantes/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo
14.
Life Sci ; 322: 121644, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004731

RESUMO

Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in ß1/ß2-adrenoceptor (ß1/ß2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of ß1-AR with or without up-regulation of ß2-AR. AIMS: To investigate the stress-induced behavior of ß1-AR in the heart of mice expressing a non-functional ß2-AR subtype. The guiding hypothesis is that the absence of ß2-AR signaling will not affect the behavior of ß1-AR during stress and that those are independent processes. MATERIALS AND METHODS: The chronotropic and inotropic responses to ß-AR agonists in isolated atria of stressed mice expressing a non-functional ß2-AR were analyzed. The mRNA and protein expressions of ß1- and ß2-AR were also determined. KEY FINDINGS: No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the ß2- and ß1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the ß-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of ß1-AR was reduced at protein levels. SIGNIFICANCE: Collectively, our data provide evidence that the cardiac ß2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of ß1-AR expression was independent of the ß2-AR presence.


Assuntos
Agonistas Adrenérgicos beta , Dobutamina , Humanos , Camundongos , Ratos , Animais , Dobutamina/farmacologia , Dobutamina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Albuterol/farmacologia , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/metabolismo
15.
Food Chem Toxicol ; 176: 113776, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059383

RESUMO

Chlorprenaline hydrochloride (CLOR) is a typical representative of ß-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.


Assuntos
Acetilcolinesterase , Peixe-Zebra , Animais , Larva/metabolismo , Acetilcolinesterase/metabolismo , Isoproterenol/metabolismo
16.
Nutrients ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986070

RESUMO

Cardiac hypertrophy is accompanied by increased myocardial oxidative stress, and whether naringenin, a natural antioxidant, is effective in the therapy of cardiac hypertrophy remains unknown. In the present study, different dosage regimens (25, 50, and 100 mg/kg/d for three weeks) of naringenin (NAR) were orally gavaged in an isoprenaline (ISO) (7.5mg/kg)-induced cardiac hypertrophic C57BL/6J mouse model. The administration of ISO led to significant cardiac hypertrophy, which was alleviated by pretreatment with naringenin in both in vivo and in vitro experiments. Naringenin inhibited ISO-induced oxidative stress, as demonstrated by the increased SOD activity, decreased MDA level and NOX2 expression, and inhibited MAPK signaling. Meanwhile, after the pretreatment with compound C (a selective AMPK inhibitor), the anti-hypertrophic and anti-oxidative stress effects of naringenin were blocked, suggesting the protective effect of naringenin on cardiac hypertrophy. Our present study indicated that naringenin attenuated ISO-induced cardiac hypertrophy by regulating the AMPK/NOX2/MAPK signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Cardiomegalia , Camundongos , Animais , Isoproterenol/toxicidade , Isoproterenol/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Estresse Oxidativo , Transdução de Sinais , Miócitos Cardíacos
17.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770602

RESUMO

The study was conducted to determine whether corosolic acid could protect the myocardium of diabetic rats from damage caused by isoproterenol (ISO) and, if so, how peroxisome proliferator-activated receptor gamma (PPAR-γ) activation might contribute into this protection. Diabetes in the rats was induced by streptozotocin (STZ), and it was divided into four groups: the diabetic control group, diabetic rats treated with corosolic acid, diabetic rats treated with GW9662, and diabetic rats treated with corosolic acid plus GW9662. The study was carried out for 28 days. The diabetic control and ISO control groups showed a decrease in mean arterial pressure (MAP) and diastolic arterial pressure (DAP) and an increase in systolic arterial pressure (SAP). The rat myocardium was activated by corosolic acid treatment, which elevated PPAR-γ expression. A histopathological analysis showed a significant reduction in myocardial damage by reducing myonecrosis and edema. It was found that myocardial levels of CK-MB and LDH levels were significantly increased after treatment with corosolic acid. By decreasing lipid peroxidation and increasing endogenous antioxidant levels, corosolic acid therapy showed a significant improvement over the ISO diabetic group. In conclusion, our results prove that corosolic acid can ameliorate ISO-induced acute myocardial injury in rats. Based on these results, corosolic acid seems to be a viable new target for the treatment of cardiovascular diseases and other diseases of a similar nature.


Assuntos
Diabetes Mellitus Experimental , PPAR gama , Ratos , Animais , PPAR gama/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Isoproterenol/metabolismo
18.
Ultrastruct Pathol ; 47(1): 12-21, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588172

RESUMO

Calanus oil, an oil extracted from the marine crustacean Calanus finmarchicus, is one of the richest sources of omega-3 and poly-unsaturated fatty acids. Although calanus oil has been shown to have a significant anti-hypertensive, anti-inflammatory, anti-fibrotic and anti-obesity effects in various cardiovascular diseases, but little is known about its effect on pathological cardiac hypertrophy. Thus, the present study was carried out to evaluate the therapeutic effect of calanus oil on cardiac hypertrophy. Cardiac hypertrophy was induced by subcutaneous injections with isoproterenol (5 mg/kg b.w) for 14 consecutive days. Calanus oil (400 mg/kg) was given orally for 4 weeks. Cardiac pathological remodeling was evaluated by echocardiography, after which morphometric, biochemical, histological and ultrastructural analyses were performed. Calanus oil treatment significantly ameliorated isoproterenol-induced structural and functional alterations in echocardiography. Calanus oil also reduced the relative heart weight, significantly decreased the elevated cardiac enzymes (LDH and CK-MB) and the lipid peroxidation marker (MDA), augmented the myocardial antioxidant status (TAC), and ameliorated the histopathological and ultrastructural changes in cardiac tissues and prevented interstitial collagen deposition. The present study, for the first time, provided morphometric, biochemical, histological and ultrastructural evidences supporting the promising anti-hypertrophic effect of calanus oil against ISO-induced cardiac hypertrophy. This anti-hypertrophic effect of calanus oil is via regulating myocardial remodeling and oxidative stress. Therefore, it could be used as potential pharmacological intervention in the management of cardiac hypertrophy.


Assuntos
Miocárdio , Estresse Oxidativo , Humanos , Isoproterenol/toxicidade , Isoproterenol/metabolismo , Miocárdio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
19.
Sci Rep ; 13(1): 436, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624121

RESUMO

We aimed to explore whether superfluous sympathetic activity affects myoblast differentiation, fusion, and myofiber types using a continuous single-dose isoprenaline exposure model in vitro and to further confirm the role of distinct NFATs in ISO-mediated effects. Compared with delivery of single and interval single, continuous single-dose ISO most obviously diminished myotube size while postponing myoblast differentiation/fusion in a time- and dose-dependent pattern, accompanied by an apparent decrease in nuclear NFATc1/c2 levels and a slight increase in nuclear NFATc3/c4 levels. Overexpression of NFATc1 or NFATc2, particularly NFATc1, markedly abolished the inhibitory effects of ISO on myoblast differentiation/fusion, myotube size and Myh7 expression, which was attributed to a remarkable increase in the nuclear NFATc1/c2 levels and a reduction in the nuclear NFATc4 levels and the associated increase in the numbers of MyoG and MEF2C positive nuclei within more than 3 nuclei myotubes, especially in MEF2C. Moreover, knockdown of NFATc3 by shRNA did not alter the inhibitory effect of ISO on myoblast differentiation/fusion or myotube size but partially recovered the expression of Myh7, which was related to the slightly increased nuclear levels of NFATc1/c2, MyoG and MEF2C. Knockdown of NFATc4 by shRNA prominently increased the number of MyHC +, MyoG or MEF2C + myoblast cells with 1 ~ 2 nuclei, causing fewer numbers and smaller myotube sizes. However, NFATc4 knockdown further deteriorated the effects of ISO on myoblast fusion and myotube size, with more than 5 nuclei and Myh1/2/4 expression, which was associated with a decrease in nuclear NFATc2/c3 levels. Therefore, ISO inhibited myoblast differentiation/fusion and myotube size through the NFAT-MyoG-MEF2C signaling pathway.


Assuntos
Fibras Musculares Esqueléticas , Transdução de Sinais , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Diferenciação Celular , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , RNA Interferente Pequeno/metabolismo
20.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35855640

RESUMO

When pathological hypertrophy progresses to heart failure (HF), the prognosis is often very poor. Therefore, it is crucial to find new and effective intervention targets. Here, myocardium-specific Trim44 knockout rats were generated using CRISPR-Cas9 technology. Cardiac phenotypic observations revealed that Trim44 knockout affected cardiac morphology at baseline. Rats with Trim44 deficiency exhibited resistance to cardiac pathological changes in response to stimulation via isoproterenol (ISO) treatment, including improvement of cardiac remodeling and dysfunction by morphological and functional observations, reduced myocardial fibrosis and reduced expression of molecular markers of cardiac stress. Furthermore, signal transduction validation associated with growth and hypertrophy development in vivo and in vitro demonstrated that Trim44 deficiency inhibited the activation of signaling pathways involved in myocardial hypertrophy, especially response to pathological stress. In conclusion, the present study indicates that Trim44 knockout attenuates ISO-induced pathological cardiac remodeling through blocking the AKT/mTOR/GSK3ß/P70S6K signaling pathway. This is the first study to demonstrate the function and importance of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy and HF.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Remodelação Ventricular , Animais , Cardiomegalia/genética , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Isoproterenol/uso terapêutico , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...